Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.26.542482

ABSTRACT

Targeted synthetic vaccines have the potential to transform our response to viral outbreaks; yet the design of these vaccines requires a comprehensive knowledge of viral immunogens, including T-cell epitopes. Having previously mapped the SARS-CoV-2 HLA-I landscape, here we report viral peptides that are naturally processed and loaded onto HLA-II complexes in infected cells. We identified over 500 unique viral peptides from canonical proteins, as well as from overlapping internal open reading frames (ORFs), revealing, for the first time, the contribution of internal ORFs to the HLA-II peptide repertoire. Most HLA-II peptides co-localized with the known CD4+ T cell epitopes in COVID-19 patients. We also observed that two reported immunodominant regions in the SARS-CoV-2 membrane protein are formed at the level of HLA-II presentation. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and non-structural and non-canonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize the vaccine effectiveness.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.02.324145

ABSTRACT

T cell-mediated immunity may play a critical role in controlling and establishing protective immunity against SARS-CoV-2 infection; yet the repertoire of viral epitopes responsible for T cell response activation remains mostly unknown. Identification of viral peptides presented on class I human leukocyte antigen (HLA-I) can reveal epitopes for recognition by cytotoxic T cells and potential incorporation into vaccines. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two human cell lines at different times post-infection using mass spectrometry. We found HLA-I peptides derived not only from canonical ORFs, but also from internal out-of-frame ORFs in Spike and Nucleoprotein not captured by current vaccines. Proteomics analyses of infected cells revealed that SARS-CoV-2 may interfere with antigen processing and immune signaling pathways. Based on the endogenously processed and presented viral peptides that we identified, we estimate that a pool of 24 peptides would provide one or more peptides for presentation by at least one HLA allele in 99% of the human population. These biological insights and the list of naturally presented SARS-CoV-2 peptides will facilitate data-driven selection of peptides for immune monitoring and vaccine development.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.02.324046

ABSTRACT

The large SARS-CoV-2 spike (S) protein is the main target of current COVID-19 vaccine candidates but can induce non-neutralizing antibodies, which may cause vaccination-induced complications or enhancement of COVID-19 disease. Besides, encoding of a functional S in replication-competent virus vector vaccines may result in the emergence of viruses with altered or expanded tropism. Here, we have developed a safe single round rhabdovirus replicon vaccine platform for enhanced presentation of the S receptor-binding domain (RBD). Structure-guided design was employed to build a chimeric minispike comprising the globular RBD linked to a transmembrane stem-anchor sequence derived from rabies virus (RABV) glycoprotein (G). Vesicular stomatitis virus (VSV) and RABV replicons encoding the minispike not only allowed expression of the antigen at the cell surface but also incorporation into the envelope of secreted non-infectious particles, thus combining classic vector-driven antigen expression and particulate virus-like particle (VLP) presentation. A single dose of a prototype replicon vaccine, VSV{Delta}G-minispike-eGFP (G), stimulated high titers of SARS-CoV-2 neutralizing antibodies in mice, equivalent to those found in COVID-19 patients. Boost immunization with the identical replicon further enhanced neutralizing activity. These results demonstrate that rhabdovirus minispike replicons represent effective and safe alternatives to vaccination approaches using replication-competent viruses and/or the entire S antigen.


Subject(s)
COVID-19 , Vesicular Stomatitis
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.02.323519

ABSTRACT

Background: SARS-CoV-2, the virus causing the Covid-19 pandemic emerged in December 2019 in China and raised fears that it could overwhelm healthcare systems worldwide. In June 2020, all African countries registered human infections with SARS-CoV-2. The virus is mutating steadily and this is monitored by a well curated database of viral nucleotide sequences from samples taken from infected individual thus enabling phylogenetic analysis and phenotypic associations. Methods: We downloaded from the GISAID database, SARS-CoV-2 sequences established from four West African countries Ghana, Gambia, Senegal and Nigeria and then performed phylogenetic analysis employing the nextstrain pipeline. Based on mutations found within the sequences we calculated and visualized statistics characterizing clades according to the GISAID nomenclature. Results: We found country-specific patterns of viral clades: the later Europe-associated G-clades predominantly in Senegal and Gambia, and combinations of the earlier (L, S, V) and later clades in Ghana and Nigeria. Contrary to our expectations, the later Europe-associated G-clades emerged before the earlier clades. Detailed analysis of distinct samples showed that some of the earlier clades might have circulated latently and some reflect migration routes via Mali and Tunisia. Conclusions: The distinct patterns of viral clades in the West African countries point at its emergence from Europe and China via Asia and Europe. The observation that the later clades emerged before the earlier clades could be simply due to founder effects or due to latent circulation of the earlier clades. Only a marginal correlation of the G-clades associated with the D614G mutation could be identified with the relatively low case fatality (0.6-3.2).


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL